Structure-preserving Arnoldi-type algorithm for solving eigenvalue problems in leaky surface wave propagation

نویسندگان

  • Tsung-Ming Huang
  • Wen-Wei Lin
  • Chin-Tien Wu
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structure-Preserving Algorithms for Palindromic Quadratic Eigenvalue Problems Arising from Vibration of Fast Trains

In this paper, based on Patel’s algorithm (1993), we proposed a structure-preserving algorithm for solving palindromic quadratic eigenvalue problems (QEPs). We also show the relationship between the structure-preserving algorithm and the URV-based structure-preserving algorithm by Schröder (2007). For large sparse palindromic QEPs, we develop a generalized >skew-Hamiltonian implicity-restarted ...

متن کامل

Electron energy level calculation for a three dimensional quantum dot

Abstract: In this paper we consider the rational eigenvalue problem governing the relevant energy levels and wave functions of a three dimensional quantum dot. We present iterative projection methods of Arnoldi and of Jacobi–Davidson type for computing a few eigenpairs of this system. Solving the projected nonlinear eigenvalue problems we take advantage of a minmax characterization of the eigen...

متن کامل

A Global Arnoldi Method for Large non-Hermitian Eigenproblems with Special Applications to Multiple Eigenproblems∗

Global projection methods have been used for solving numerous large matrix equations, but nothing has been known on if and how a global projection method can be proposed for solving large eigenproblems. In this paper, based on the global Arnoldi process that generates an Forthonormal basis of a matrix Krylov subspace, a global Arnold method is proposed for large eigenproblems. It computes certa...

متن کامل

Memory-efficient Arnoldi algorithms for linearizations of matrix polynomials in Chebyshev basis

Novel memory-efficient Arnoldi algorithms for solving matrix polynomial eigenvalue problems are presented. More specifically, we consider the case of matrix polynomials expressed in the Chebyshev basis, which is often numerically more appropriate than the standard monomial basis for a larger degree d. The standard way of solving polynomial eigenvalue problems proceeds by linearization, which in...

متن کامل

Algebraic Eigenvalue Problems

Even if both A and B are real-valued, it is likely that λ and x are complexvalued. Finding the solution of eigensystems is a fairly complicated procedure. It is at least as difficult as finding the roots of polynomials. Therefore, any numerical method for solving eigenvalue problems is expected to be iterative in nature. Algorithms for solving eigenvalue problems include the power method, subsp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 219  شماره 

صفحات  -

تاریخ انتشار 2013